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Abstract—In recent years, consumer wearable devices
focused on health assessment have gained popularity. Of
these devices, a large number target monitoring heart rate;
a few among them include additional biometrics such as
breathing rate, galvanic skin response, and skin temper-
ature. Heart rate, and more specifically, heart rate vari-
ability (HRV) measures have proven useful in monitoring
user psychological states, such as mental workload, stress
and anxiety. Most studies, however, have been conducted
in controlled laboratory environments with artificially-
induced psychological responses. While these conditions
assure high quality in the collected data, the amount of
data are limited and the generalization of the findings to
more ecologically-appropriate settings remains unknown.
To this end, in this paper we compare the accuracy of
two wearable devices, namely a smart-shirt measuring
electrocardiograms and a smart-bracelet measuring pho-
toplethysmograms. Several HRV features are extracted
and tested as correlates of stress and anxiety. Data were
collected from 196 participants during their normal work
shifts for a period of 10 weeks. The complementarity of
the two devices is also explored and the advantages of each
method are discussed.

I. INTRODUCTION

Advances in miniaturization, battery and sensing tech-
nologies have allowed the development of wearable
devices for long-term, unobtrusive and continuous ac-
quisition of biomedical data. With the emergence of
the quantified-self movement [1], wireless heart rate
monitors have proliferated not only within the clin-
ical realm (e.g., [2]) but also within the sports and
consumer markets (e.g., [3], [4]). A large number of
these devices have reached the market in form of chest
straps (e.g., Polar), smart-bracelets (Fitbit, Garmin), and
smart-garments, which measure cardiac activity through
sensors incorporated in the fabric (Hexoskin, OMsignal).
Within these devices, heart rate (HR) has remained the
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principal measurement modality, as long-term monitor-
ing of heart rate variability (HRV) has been shown useful
for cardiovascular disease assessment [5], [6].

Additionally, metrics derived from HRV have been
found to be important correlates of several quality-of-
life indices, such as psycho-social workload [7] (i.e.,
job stressors), mental workload and anxiety [8], as
well as mental fatigue [9]. Heart rate variability is
an indicator of the changes in the autonomic nervous
system and has traditionally been quantified using time-
and/or frequency-domain features computed from inter-
beat interval time series, also known as RR-intervals
(RR;). Time domain features quantify the statistical
properties and rate of change of the RR series, whereas
frequency domain features have been related to the
balance between the sympathetic and parasympathetic
branches of the nervous system [6], [10].

Typically, HRV studies have relied on controlled
laboratory experiments with artificially induced psy-
chophysiological responses, such as the use of Stroop
tests for attention, or video games for stress. While
this allows for high-quality data to be recorded and for
subjective variability to be reduced, it limits the amount
of data to be recorded, as well as duration of the data
collection. Transferability of the obtained models and
findings to more ecologically appropriate settings is also
not assured. To overcome this limitation, we collected
data from 196 staff members of a large hospital during
a 10-week period. Participants wore a smart-shirt and a
smart-bracelet, either alone or in combination, as they
carried out their normal work shifts. With a companion
App, they were asked about their day to day stress and
anxiety levels. A comparison between the two devices
is made in terms of the potential to measure stress and
anxiety. Moreover, the complementarity of the two was
also explored, suggesting that multimodal methods may
be the most appropriate for “in-the-wild” experiments.

II. MATERIALS AND METHODS
A. Participants

Data was collected from 196 participants (66 male,
age 38.6 + 9.8 years) from a pool of employees (nurses
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and staff) of a large urban hospital in California. Ap-
proximately, two-thirds of the participants were nurses
while one-third were hospital staff. During 10 weeks,
participants carried out their work day as usual but were
asked to fill a brief smartphone-based daily survey that
included information on levels of stress and anxiety
on a 5-point scale. Besides the daily surveys, during
their work shift the participants wore multiple wearable
sensors. Data collection protocol approval was obtained
from the Institutional Review Board of the affiliated
institutions and participants consented to participate in
the study.

B. Wearable Sensors

Participants were outfitted with multiple wearable de-
vices to collect a variety of biometric data such as vocal
audio features [11], heart rate, respiration rate, and sleep
quality, among others. Heart rate data were acquired
simultaneously with an OMsignal smart-shirt and a
Fitbit Charge 2 smart-bracelet. Henceforth, these devices
are referred to as OMsignal and Fitbit, respectively.
While HR measurement is reported by both devices,
they are derived from different modalities. More specifi-
cally, OMsignal derives HR from the electrocardiogram
(ECG) signal obtained with sensors embedded in the
fabric of the shirt, while Fitbit extracts the HR from
the photoplethysmogram (PPG) signal obtained at the
wrist. Although both modalities are capable of obtaining
reliable measurements of the instantaneous HR [12],
only the OMsignal device provides HR values beat-to-
beat, whereas the Fibit delivers a pre-processed coarse
grained HR sample every 5 seconds. As such, the RR
time series obtained from the HR values reported for
each device have different temporal resolutions.

In addition to HR, the devices provide other biomet-
ric and activity measurements. For example, OMsignal
monitors breathing rate, step count and intensity of
physical activity. The device also provides an internal
quality parameter called RR coverage (RR..,), which is
the number of R peaks clearly detected over a 5-minute
period, with higher values indicating higher ECG quality
of signal. Fitbit, in turn, provides step count, sleep time
and quality, and calories burned. For this study, only
the heart rate data is used for comparisons. A summary
of the functionalities of each device and the modalities
measured is presented in Table I.

C. HRYV Feature Extraction

Here, classical time- and frequency-domain HRV
features were extracted from the RR time series. A
complete description of these HRV measurements can be
found in [6], [10]. Time-domain features were computed
for both devices, but due to the low temporal resolution
of Fitbit, not all frequency-domain features could be

TABLE 1
FUNCTIONALITY AND MODALITY COMPARISON BETWEEN THE
TWO WEARABLE DEVICES USED.

OMSignal Fitbit Charge 2
Technique ECG PPG
HR resolution | Instantaneous Avg every 5 s
Form factor Shirt or Bra Bracelet
Battery life 18-20 hrs 5 days
Other breathing rate, sleep,
measurements | physical activity | calories, steps

TABLE I
HRV FEATURES COMPUTED FROM THE RR TIME SERIES.

Feature

Fitbit

mean RR

standard deviation (std) RR (SDNN)
coefficient of variation RR

% of RR differences > 50 ms (pNN50)
mean of 1% RR difference (diff)

std of absolute (abs) 1°* RR diff

root mean square of 1°* RR diff (RMSDD)
mean abs 1°* RR diff of normalized RR

Time

Lol o B T B

total power

high frequency power (HF)

ratio of HF to total power (HF norm)
low frequency power (LF)

ratio of LF to total power. (LF norm)
ratio of LF to HF (LF/HF)

very low frequency power (VLF)

Frequency
MMM oM M M x| X X X X x| OMsignal

measured for the smart-bracelet. Time- and frequency-
domain features were extracted over 5-minute windows.
A complete list of the extracted features is given in Ta-
ble II along with an indication if they were extracted for
OMsignal, Fitbit, or both. It is important to emphasize
that the majority of these features have been shown in
the literature to correlate with mental workload [13] and
anxiety [8].

The HRV features were further aggregated over an
entire day using the following statistical functionals:
mean, standard deviation, coefficient of variation, me-
dian, min, max, Ist and 3rd quartile, skewness, and
kurtosis. Thus, for a day of data from each participant, a
total of 90 features derived from Fitbit and 150 features
derived from OMSignal were computed. The prediction
power for the stress and anxiety levels was evaluated
for three features sets, namely, (i) OMsignal, (ii) Fitbit,
and (iii) combined OMsignal-Fitbit. The latter explores
the complementary nature of the two devices and the

2214



cassani



usefulness of a multimodal setup.

D. Feature Selection and Classification

As we are looking at changes in cardiac activity over
the duration of a day, despite the long duration of the
data collection protocol, we are still left with a relatively
small number of samples relative to the number of
features explored. As such, feature selection needs to
be performed in order to not only sift out the most
discriminatory features, but also to remove features that
are highly correlated. For this purpose, recursive feature
elimination was performed with a step size of 5 using
the Extra Trees Classifier. The top 50 features were then
selected for classification at each cross-validation step.
Feature selection and classification were performed on
OMsignal, Fitbit and OMsignal-Fitbit feature sets. A
five-fold cross-validation test setup was performed with
feature selection taking place for the top 50 features at
each fold. Classification was then performed on subject-
wise binarized high/low stress and anxiety levels. A
support vector machine (SVM) classifier with a RBF
kernel (radius=1/number of features) was used. The
‘balanced’ setting in the SVM classifier, where the
target value is used to automatically adjust class weights
of the inversely proportional to class frequencies in
the input data. These class weights are then used to
readjust the penalty parameter C' to C'x(class,,eight[i])
for class ¢. Finally, as the data was unbalanced, F1-
score, balanced accuracy (BACC), sensitivity (Sens),
and specificity (Spec) are used as classifier performance
figures-of-merit. Our experiments were carried out with
the open-source scikit-learn toolbox [14].

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Cross-Device Similarity

Pearson’s correlation between the nine common HRV
features from OMsignal and Fitbit was computed to
gauge the similarity in HR reading between the two
modalities. Table III reports these correlation values for
all segments (corresponding to the RR.,, > 0), as
well as to identify the segments deemed high quality
(RRcoy > 0.8) by the smart-shirt. As can be seen, both
devices capture heart rate accurately, with a correlation
of 0.84 when noisy OMsignal segments are considered
and 0.92 if only high-quality segments are used. Inter-
estingly, the correlations between HRV features, despite
their increase with increasing RR.,,, are much lower
and mostly below 0.5. This low correlation is due to
the lower temporal resolution of Fitbit, thus potentially

limiting its usage for long-term HRV analysis.

B. Stress and Anxiety Predictions

Classification results for stress and anxiety are shown
in Tables IV and V, respectively. As can be seen,

TABLE III
CORRELATION BETWEEN OMSIGNAL AND FIBIT FEATURES FOR
DIFFERENT RR COVERAGE VALUES

Feature RRcov >0 RReoyw > 0.8
mean RR 0.84 0.92
SDNN 0.39 0.53
coefficient of variation RR 0.27 0.46
RMSDD 0.19 0.33
pNNS50 0.21 0.35
mean of 1% RR diff 0.06 0.35
std of abs 1°* diff 0.13 0.21
mean of abs 1°% diff norm RR 0.15 0.29
total power 0.07 0.19
TABLE IV

PERFORMANCE COMPARISON FOR STRESS PREDICTION

Feature | BACC Fl1 Sens Spec
OMSignal | 0.5847 0.5481 0.5389 0.6305

Fitbit 0.5435 0.5167 0.5261 0.5610
Combined | 0.5869 0.5546 0.5517 0.6222

for stress measurement OMsignal-based features out-
performed Fitbit features in all figures-of-merit used
(e.g., 4.12% higher BACC, and 3.14% higher F1 score).
Combining both modalities only resulted in slight im-
provements in BACC, F1, and sensitivity. For anx-
iety, OMSignal features again performed better than
the Fitbit ones across all tested figures-of-merit (e.g.,
4.19% higher BACC and 5.95% higher F1 score). Unlike
stress measurement, however, for anxiety monitoring the
multimodal OMsignal-Fitbit feature set resulted in im-
provements across all tested performance metrics, with
only a slight drop in specificity (0.6331 versus 0.6335).
Overall, gains over OMSignal features alone of 1.49%
BACC and 2.13% Fl-score could be seen. For anxiety
measurement, Fitbit features alone achieved very low
sensitivity, but helped improve overall sensitivity when
combined with OMsignal features, thus suggesting their
complementarity. These findings corroborate those of
[15], [16] and suggest that multimodal approaches may
be useful for monitoring of stress and anxiety in natural
real-world settings such as work place, as extraction of
HRYV features from varying temporal resolutions seems

TABLE V
PERFORMANCE COMPARISON FOR ANXIETY PREDICTION

Feature | BACC Fl Sens Spec
OMSignal | 0.5765 0.4906 0.5195 0.6335

Fitbit 0.5346 0.4311 0.4419 0.6273
Combined | 0.5914 0.5119 0.5497 0.6331
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to provide complementary information, likely due to the
fractal nature of cardiac signals.

To further explore the importance of the features, an
in-depth analysis on the features ranked highly across
all five cross-validation trials was performed on the
fused data set. For stress, we observed that 14 features
were common in 4 of the 5 feature selection steps
while 15 features were common in all the 5 steps.
Of the total 29 features, 8 features were from Fitbit
and included different functional aggregates of mean of
RR, coefficient of variation, and mean of absolute 15t
difference of normalized RR. Of the Fitbit features, the
coefficient of variation was most commonly occurring
with 5 different functional aggregates. From OMSignal,
in turn, most frequency features appeared in the top
29 features, except for total power in all frequencies
and high frequency power. Additionally the coefficient
of variation and mean RR each occurred 4 times with
different functional aggregates.

For anxiety, we observed that 17 features were com-
mon in 4 of the 5 feature selection steps although no
features appeared in the top fifty feature set for all 5
steps. Of the 17 features only 2 features were from
Fitbit and consisted in different functional aggregates
of the coefficient of variation of the RR series. The
most common feature from OMSignal was the mean
of absolute 1°¢ difference of the normalized RR series,
which appeared 6 times, with different functional ag-
gregates. From the frequency features only very low
frequency power appeared in the 17 features twice as
median and 1%¢ quartile functional aggregates. Overall,
we found that skewness is the most commonly occurring
functional aggregate in the top features for stress, while
max and coefficient of variation are commonly occurring
aggregates for anxiety.

I'V. CONCLUSIONS

In this work we compared stress and anxiety predic-
tion performance based on heart rate variability features
computed from a smart-shirt (OMsignal) and a smart-
bracelet (Fitbit). It was observed that despite using
different monitoring modalities (ECG versus PPG), both
devices measured HR similarly, achieving correlations
as high as 0.92. Their varying temporal resolutions,
however, resulted in varying HRV parameters. Overall,
HRV features computed from OMsignal data (higher
temporal resolution) proved to be more effective at pre-
dicting stress and anxiety. Notwithstanding, by combin-
ing features from both OMsignal and Fitbit, it was found
that improvements could be obtained, particularly for
anxiety prediction, thus suggesting that using features
at varying temporal resolutions or scales may be useful
to characterize the fractal behavior of cardiac activity.
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